

FEATURES

- Low Supply Current...20 μA Typ
- Single Power Supply
- Rail-to-Rail Common-Mode Input Voltage Range
- Push-Pull Output Circuit
- Low Input-Bias Current

APPLICATIONS

- · Battery Packs for Sensing Battery Voltage
- MP3 Players, Digital Cameras, PMPs
- Cellular Phones, PDAs, Notebook Computers
- Test Equipment
- General-Purpose Low-Voltage Applications

DESCRIPTION/ORDERING INFORMATION

The TLV7256 is a CMOS-type general-purpose dual comparator capable of single power-supply operation and using lower supply currents than the conventional bipolar comparators. Its push-pull output can connect directly to local ICs such as TTL and CMOS circuits.

ORDERING INFORMATION(1)

T _A	PACKAGE ⁽⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP - DCT	Reel of 3000	TLV7256IDCTR	PREVIEW
-40°C to 85°C	330P - DC1	Reel of 250	TLV7256IDCTT	PREVIEW
	VSSOP - DDU	Reel of 3000	TLV7256IDDUR	YAUA

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Typical Application Circuit

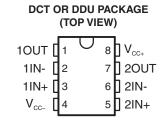



Figure 1. Threshold Detector

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TLV7256 DUAL COMPARATOR

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V _{CC}	Supply voltage	Supply voltage				V
V_{ID}	Differential input voltage					V
VI	Input voltage			V _{CC} -	V _{CC+}	V
Io	Output current				±35	mA
0	Thermal resistance, juction to ambient ⁽²⁾	DCT package			220	°C/W
θ_{JA}	Thermal resistance, juction to ambients	DDU package			227	C/VV
D	Dower discination	DCT package			250	\//
P_D	Power dissipation	DDU package			200	mW
T _A	Operating free-air temperature range			-40	85	°C
T _{stg}	Storage temperature range			- 55	125	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

		MIN	MAX	UNIT
V_{CC}	Supply voltage	1.8	5	V
T _A	Operating free-air temperature	-40	85	°C

⁽²⁾ Package thermal impedance is calculated according to JESD 51-7.

Electrical Characteristics

 V_{CC+} = 5 V, V_{CC-} = GND, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
V	lanut offeet voltege		25°C		±2	±7	mV
V_{IO}	Input offset voltage		–40°C to 85°C			±8	mv
I _{IO}	Input offset current		25°C		2		рА
I _I	Input bias current		25°C		4		pА
V_{CM}	Common-mode input voltage		25°C	0		V _{CC}	V
CMRR	Common mode valenties votice	$\Delta V_{CM} = 5 V$	25°C	48	65		dB
CIVIKK	Common-mode rejection ratio	0 ≤ V _{CM} ≤ 5 V	–40°C to 85°C	48			uБ
		Output = High, V _{IN} = 5 V	25°C		37	51	
	Supply current	Output = Low, $V_{IN} = 5 \text{ V}$	25°C		40	60	μΑ
		Output = High, $V_{IN} = 5 \text{ V}$	-40°C to 85°C			61	
		Output = Low, $V_{IN} = 5 \text{ V}$	-40 C t0 65 C			70	
I _{CC}		Output = High, V _{IN} = 2.5 V	25°C		20	32	
		Output = Low, $V_{IN} = 2.5 \text{ V}$	25 C		26	42	
		Output = High, $V_{IN} = 2.5 \text{ V}$	-40°C to 85°C			40	
		Output = Low, $V_{IN} = 2.5 \text{ V}$	-40 C t0 65 C			53	
A_{VD}	Voltage gain	$V_D = 3 \text{ V}, 1 \text{ V} \leq V_{OUT} \leq 4 \text{ V}$	25°C		88		dB
	Cink current	V 05.V	25°C	25	33		mA
I _{sink}	Sink current	$V_{OL} = 0.5 \text{ V}$	–40°C to 85°C	20			
	Course current	V 45V	25°C	30	35		~ ∧
source	Source current	V _{OH} = 4.5 V	-40°C to 85°C	25			mA
.,	Low lovel output voltage	I 5 m A	25°C		0.07	0.12	V
V_{OL}	Low-level output voltage	$I_{sink} = 5 \text{ mA}$	–40°C to 85°C			0.20	V
V	High level cutout voltege	Ι <i>Ε</i> το Δ	25°C	4.9	4.93		V
V_{OH}	High-level output voltage	I _{source} = 5 mA	-40°C to 85°C	4.85			V

Electrical Characteristics

 V_{CC+} = 2.7 V, V_{CC-} = GND, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
V	long to offer the veltage		25°C		±2	±8	mV
V_{IO}	Input offset voltage		-40°C to 85°C			±9	mv
I _{IO}	Input offset current		25°C		2		рА
I _I	Input bias current		25°C		4		рА
V_{CM}	Common-mode input voltage		25°C	0		V _{CC}	V
CMRR	Common mode rejection ratio	$\Delta V_{CM} = 2.7 \text{ V}$	25°C	42	57		dB
CIVIKK	Common-mode rejection ratio	$0 \le V_{CM} \le 2.7 \text{ V}$	-40°C to 85°C	42			uБ
		Output = High, V _{IN} = 2.7 V	25°C		30	55	
		Output = Low, $V_{IN} = 2.7 \text{ V}$	25 C		36	55	μΑ
	Supply current	Output = High, $V_{IN} = 2.7 \text{ V}$	-40°C to 85°C			65	
		Output = Low, $V_{IN} = 2.7 \text{ V}$	-40 C to 65 C			65	
I _{CC}		Output = High, V _{IN} = 1.35 V	25°C		30	48	
		Output = Low, $V_{IN} = 1.35 \text{ V}$	25 C		35	55	
		Output = High, V _{IN} = 1.35 V	-40°C to 85°C			55	
		Output = Low, $V_{IN} = 1.35 \text{ V}$	-40 C to 65 C			65	
A_{VD}	Voltage gain	$V_D = 1.7 \text{ V}, \ 0.5 \text{ V} \le V_{OUT} \le 2.2 \text{ V}$	25°C		88		dB
_	Sink current	V - 0.5 V	25°C	13	18		mA
I _{sink}	Sink current	V _{OL} = 0.5 V	–40°C to 85°C	11			ША
-	Course current	V 22V	25°C	15	20		A
source	Source current	$V_{OH} = 2.2 \text{ V}$	-40°C to 85°C	13			mA
V	Low lovel output voltage	I 5 m A	25°C		0.11	0.16	V
V_{OL}	Low-level output voltage	$I_{sink} = 5 \text{ mA}$	–40°C to 85°C			0.19	V
V	High level output voltage	1 - 5 mA	25°C	2.54	2.60		V
V _{OH}	High-level output voltage	I _{source} = 5 mA	-40°C to 85°C	2.45			V

Electrical Characteristics

 V_{CC+} = 1.8 V, V_{CC-} = GND, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
.,	lanut offeet voltage		25°C		±2	±8	mV
V _{IO}	Input offset voltage		-40°C to 85°C			±9	mv
I _{IO}	Input offset current		25°C		2		рА
I	Input bias current		25°C		4		рА
V_{CM}	Common-mode input voltage		25°C	0		$V_{CC} - 0.3$	V
CMRR	Common-mode rejection ratio	$\Delta V_{CM} = 5 \text{ V}$	25°C	40	55		dB
CIVIKK	Common-mode rejection ratio	$0 \le V_{CM} \le 5 V$	–40°C to 85°C	40			uБ
		Output = High, V _{IN} = 1.8 V	25°C		30	55	
		Output = Low, V _{IN} = 1.8 V	25 C		33	47	μΑ
	Supply current	Output = High, $V_{IN} = 1.8 \text{ V}$	–40°C to 85°C			60	
		Output = Low, $V_{IN} = 1.8 \text{ V}$	-40 C to 65 C			51	
I _{CC}		Output = High, $V_{IN} = 0.9 \text{ V}$	25°C		20	32	
		Output = Low, $V_{IN} = 0.9 V$	25 C		25	37	
		Output = High, $V_{IN} = 0.9 \text{ V}$	-40°C to 85°C			34	
		Output = Low, $V_{IN} = 0.9 V$	40 0 10 00 0	40			
A_{VD}	Voltage gain	$V_D = 1.1 \text{ V}, 0.4 \text{ V} \le V_{OUT} \le 1.5 \text{ V}$	25°C		88		dB
	Sink current	V 05V	25°C	6	9		mA
Isink	Sink current	V _{OL} = 0.5 V	–40°C to 85°C	5			ША
	Source current	V _{OH} = 2.2 V	25°C	5	9		mA
Isource	Source current	V _{OH} = 2.2 V	–40°C to 85°C	4			ША
	Low level output voltage	Ι – 5 mΛ	25°C		0.2	0.34	V
V _{OL}	Low-level output voltage	I _{sink} = 5 mA	-40°C to 85°C			0.39	V
V	High-level output voltage		25°C	1.3	1.6		V
V _{OH}	i ligh-level output voltage	I _{source} = 5 mA	-40°C to 85°C	1.2			V

TLV7256 DUAL COMPARATOR

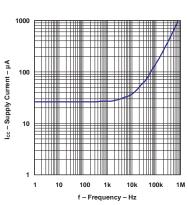
SLCS147A-OCTOBER 2006-REVISED JANUARY 2007

Switching Characteristics

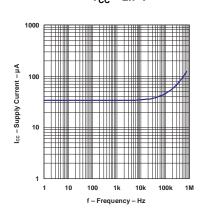
 V_{CC+} = 5 V, V_{CC-} = GND, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP	UNIT
	Drangation dolay time (turn on)	Overdrive = 100 mV	680	20
t _{PLH} Propagation delay time (turn on)		TTL step input	500	ns
	Dranagation delay time (turn off)	Overdrive = 100 mV	250	
t _{PHL}	Propagation delay time (turn off)	TTL step input	380	ns
t _{TLH}	Response time	Overdrive = 100 mV	60	no
t _{THL}	Response time	Overdrive = 100 mv	8	ns

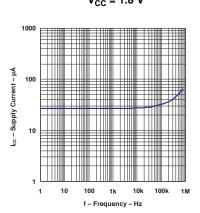
Switching Characteristics

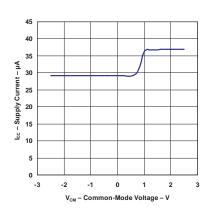

 $V_{CC+} = 3 \text{ V}, V_{CC-} = \text{GND}, T_A = 25^{\circ}\text{C} \text{ (unless otherwise noted)}$

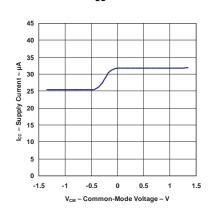
	PARAMETER	TEST CONDITIONS	TYP	UNIT
t _{PLH}	Propagation delay time (turn on)	Overdrive = 100 mV	550	ns
t _{PHL}	Propagation delay time (turn off)	Overdrive = 100 mV	250	ns
t _{TLH}	Door once time	Output the 100 ml/	30	
t _{THL}	Response time	Overdrive = 100 mV	8	ns

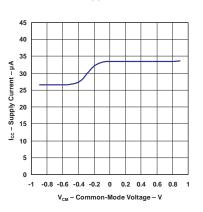


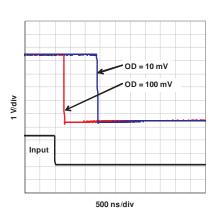
TYPICAL CHARACTERISTICS

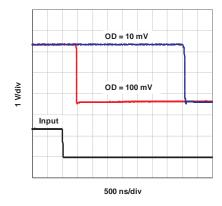

SUPPLY CURRENT
vs
FREQUENCY
V_{CC} = 5 V

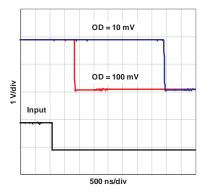

SUPPLY CURRENT
VS
FREQUENCY
V_{CC} = 2.7 V


SUPPLY CURRENT
VS
FREQUENCY
V_{CC} = 1.8 V

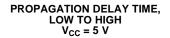

SUPPLY CURRENT vs COMMON-MODE VOLTAGE $V_{CC} = \pm 2.5 \text{ V}$

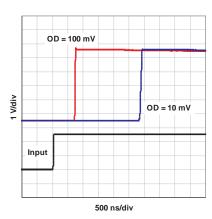

SUPPLY CURRENT VS COMMON-MODE VOLTAGE VCC = ± 1.35 V


SUPPLY CURRENT vs COMMON-MODE VOLTAGE V_{CC} = ± 0.9 V

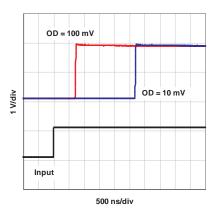

PROPAGATION DELAY TIME, HIGH TO LOW $V_{CC} = 5 \ V$

PROPAGATION DELAY TIME, HIGH TO LOW V_{CC} = 2.7 V




PROPAGATION DELAY TIME, HIGH TO LOW $V_{CC} = 1.8 \text{ V}$

TYPICAL CHARACTERISTICS (continued)



PROPAGATION DELAY TIME, LOW TO HIGH $V_{CC} = 2.7 \text{ V}$

PROPAGATION DELAY TIME, LOW TO HIGH V_{CC} = 1.8 V

PACKAGE OPTION ADDENDUM

21-Mar-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins P	ackage Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TLV7256IDDUR	ACTIVE	VSSOP	DDU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV7256IDDURG4	ACTIVE	VSSOP	DDU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

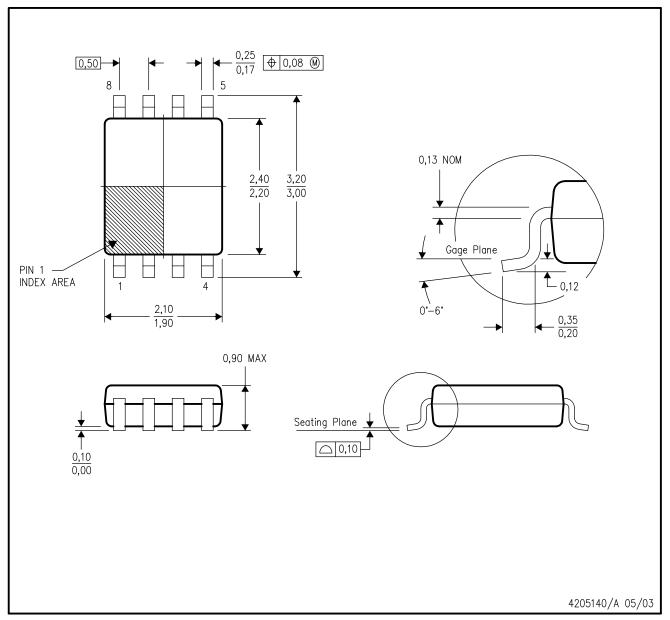
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DDU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation CA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265